The Bergman Spaces, the Bloch Space, and Gleason's Problem
نویسنده
چکیده
Suppose / is a holomorphic function on the open unit ball Bn of Cn. For 1 < p < oo and to > 0 an integer, we show that / is in Lp(Bn,dV) (with dV the volume measure) iff all the functions dmf/dza (\a\ = to) are in Lp(Bn,dV). We also prove that / is in the Bloch space of Bn iff all the functions dmf/dza (\a\ = m) are bounded on Bn. The corresponding result for the little Bloch space of Bn is established as well. We will solve Gleason's problem for the Bergman spaces and the Bloch space of Bn before proving the results stated above. The approach here is functional analytic. We make extensive use of the reproducing kernels of B„. The corresponding results for the polydisc in Cn are indicated without detailed proof.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملProducts of multiplication, composition and differentiation between weighted Bergman-Nevanlinna and Bloch-type spaces
Let φ and ψ be holomorphic maps on such that φ( ) ⊂ . Let Cφ,Mψ and D be the composition, multiplication and differentiation operators, respectively. In this paper, we consider linear operators induced by products of these operators from Bergman-Nevanlinna spaces AβN to Bloch-type spaces. In fact, we prove that these operators map AβN compactly into Bloch-type spaces if and only if they map A β...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کامل